Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jonathan D Crane* and Amanda McLaughlin

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.002 Å R factor = 0.034 wR factor = 0.083 Data-to-parameter ratio = 20.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(Pyridin-2-yl)thiazol-2-ylamine

At 150 K, the asymmetric unit of the crystal structure of the title compound, $C_8H_7N_3S$, comprises three molecules. All the amine N-H groups and heterocyclic N atoms are involved in intermolecular hydrogen bonding.

Received 9 December 2003 Accepted 17 December 2003 Online 24 December 2003

Comment

The title compound, (I), crystallizes with three molecules in the asymmetric unit. The dihedral angles between the leastsquares planes of the two heterocyclic rings in molecules 1 (S1, *etc.*), 2 (S2, *etc.*) and 3 (S3, *etc.*) are 22.23 (4), 14.02 (4) and 21.08 (4)°, respectively. All three molecules form doubly intermolecularly hydrogen-bonded dimers through pairs of intermolecular hydrogen bonds, molecule 1 with molecule 2 (Fig. 1), and molecule 3 with a centrosymmetrically related partner (Fig. 2). The outwardly directed N—H bonds of these dimers are hydrogen bonded to pyridine N atoms of neighbouring dimers (Table 3).

Experimental

The title compound, (I), was prepared according to the methods of Brown *et al.* (1980) and Taurins & Blaga (1970). Suitable crystals were grown by recrystallization from acetonitrile.

Crystal data	
C ₈ H ₇ N ₃ S	$D_x = 1.456 \text{ Mg m}^{-3}$
$M_r = 177.23$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 22342
$a = 13.2392 (10) \text{\AA}$	reflections
$b = 13.7499(9) \text{ Å}_{2}$	$\theta = 2.1 - 30.0^{\circ}$
c = 14.1126 (12) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 109.268 \ (6)^{\circ}$	T = 150 (2) K
$V = 2425.1 (3) \text{ Å}^3$	Block, colourless
Z = 12	$0.60 \times 0.55 \times 0.50 \text{ mm}$
$\begin{array}{c} & & & & & & \\ & & & & \\$	C7 C8 N3 N3 H7B C17 C18 C17 C18 C19 N9 C20 C24 C21 C22 C22

View of the three independent molecules of (I), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Hydrogen bonds are indicated by dashed lines.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Stoe IPDS II area-detector diffractometer ω scans Absorption correction: none 25877 measured reflections 7032 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.084$ S = 0.907032 reflections 349 parameters

Table 1

Selected geometric parameters (Å, °).

\$1-C2	1.7265 (13)	N6-C16	1.3368 (17)
S1-C1	1.7557 (13)	N6-C12	1.3539 (15)
S2-C10	1.7247 (13)	N7-C17	1.3503 (17)
S2-C9	1.7595 (12)	N8-C17	1.3102 (17)
S3-C18	1.7294 (13)	N8-C19	1.3915 (15)
S3-C17	1.7523 (13)	N9-C24	1.3402 (18)
N1-C1	1.3452 (17)	N9-C20	1.3451 (16)
N2-C1	1.3104 (17)	C2-C3	1.3553 (18)
N2-C3	1.3894 (15)	C3-C4	1.4712 (17)
N3-C8	1.3419 (18)	C10-C11	1.3607 (17)
N3-C4	1.3497 (16)	C11-C12	1.4722 (17)
N4-C9	1.3446 (16)	C18-C19	1.3527 (19)
N5-C9	1.3113 (16)	C19-C20	1.4731 (17)
N5-C11	1.3928 (15)		
C2-S1-C1	89.27 (6)	N5-C9-N4	124.81 (11)
C10-S2-C9	89.04 (6)	N5-C9-S2	114.43 (9)
C18-S3-C17	89.04 (6)	N4-C9-S2	120.74 (10)
N2-C1-N1	124.34 (12)	N8-C17-N7	124.31 (13)
N2-C1-S1	114.13 (9)	N8-C17-S3	114.53 (9)
N1-C1-S1	121.49 (11)	N7-C17-S3	121.16 (11)

5224 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

 $\begin{array}{l} R_{\rm int} = 0.077 \\ \theta_{\rm max} = 30.0^\circ \end{array}$

 $h=-17 \rightarrow 18$

 $\begin{array}{l} k = -17 \rightarrow 19 \\ l = -19 \rightarrow 19 \end{array}$

refinement

 $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta\rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Table 2Contact distances (Å).

$N2 \cdot \cdot \cdot C23^{i}$	3.396 (2)	C6···C11 ⁱⁱⁱ	3.276 (2)
$C1 \cdot \cdot \cdot C23^{i}$	3.367 (2)	N3···C22 ⁱⁱ	3.4973 (17)
$C2 \cdot \cdot \cdot C20^{ii}$	3.3936 (16)	N3···C23 ⁱⁱ	3.3729 (18)
C2···C21 ⁱⁱ	3.346 (2)	$C14 \cdot \cdot \cdot N8^{iv}$	3.2414 (16)
C5···C9 ⁱⁱⁱ	3.489 (2)	$C14 \cdot \cdot \cdot C19^{iv}$	3.4051 (16)
$C6 \cdot \cdot \cdot N5^{iii}$	3.2952 (19)		. ,

Symmetry codes: (i) -x, 1-y, 1-z; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) 1-x, 2-y, 1-z; (iv) x, 1+y, z.

Figure 2

View of the centrosymmetric hydrogen-bonded dimer of molecule 3.

Table 3

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots N5$	0.90(2)	2.33 (2)	3.1852 (17)	159.1 (18)
$N1 - H1B \cdot \cdot \cdot N9^{iv}$	0.82 (2)	2.19 (2)	3.0077 (19)	170.1 (17)
$N4 - H4A \cdots N2$	0.889 (18)	2.101 (18)	2.9893 (17)	177.0 (15)
$N4 - H4B \cdot \cdot \cdot N6^{v}$	0.838 (19)	2.207 (19)	3.0320 (18)	168.1 (18)
$N7 - H7A \cdots N8^{i}$ $N7 - H7B \cdots N3$	0.88 (2) 0.86 (2)	2.21 (2) 2.38 (2)	3.0828 (19) 3.2249 (19)	172.2 (19) 169.1 (17)

Symmetry codes: (i) -x, 1 - y, 1 - z; (iv) x, 1 + y, z; (v) 1 - x, $y - \frac{1}{2}$, $\frac{3}{2} - z$.

All H atoms were initially located in a difference Fourier map. The amine H-atom positional parameters were refined freely, along with an isotropic displacement parameter. All C-H atoms were placed in geometrically idealized positions, with C-H distances of 0.95 Å. $U_{\rm iso}({\rm H})$ values were set at $1.2U_{\rm eq}({\rm C})$ for all H atoms.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-RED (Stoe & Cie, 2001); data reduction: X-RED; program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Brown, D. J., Cowden, W. B., Grigg, G. W. & Kavulak, D. (1980). Aust. J. Chem. 33, 2291–2298.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2001). X-AREA, X-RED and X-STEP32. Stoe & Cie GmbH, Darmstadt, Germany.

Taurins, A. & Blaga, A. (1970). J. Heterocycl. Chem. 7, 1137-1141.